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Abstract

IMPORTANCE Breast cancer screening is among the most common radiological tasks, with more
than 39 million examinations performed each year. While it has been among the most studied
medical imaging applications of artificial intelligence, the development and evaluation of algorithms
are hindered by the lack of well-annotated, large-scale publicly available data sets.

OBJECTIVES To curate, annotate, and make publicly available a large-scale data set of digital breast
tomosynthesis (DBT) images to facilitate the development and evaluation of artificial intelligence
algorithms for breast cancer screening; to develop a baseline deep learning model for breast cancer
detection; and to test this model using the data set to serve as a baseline for future research.

DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, 16 802 DBT examinations with at
least 1 reconstruction view available, performed between August 26, 2014, and January 29, 2018,
were obtained from Duke Health System and analyzed. From the initial cohort, examinations were
divided into 4 groups and split into training and test sets for the development and evaluation of a
deep learning model. Images with foreign objects or spot compression views were excluded. Data
analysis was conducted from January 2018 to October 2020.

EXPOSURES Screening DBT.

MAIN OUTCOMES AND MEASURES The detection algorithm was evaluated with breast-based
free-response receiver operating characteristic curve and sensitivity at 2 false positives per volume.

RESULTS The curated data set contained 22 032 reconstructed DBT volumes that belonged to 5610
studies from 5060 patients with a mean (SD) age of 55 (11) years and 5059 (100.0%) women. This
included 4 groups of studies: (1) 5129 (91.4%) normal studies; (2) 280 (5.0%) actionable studies, for
which where additional imaging was needed but no biopsy was performed; (3) 112 (2.0%) benign
biopsied studies; and (4) 89 studies (1.6%) with cancer. Our data set included masses and
architectural distortions that were annotated by 2 experienced radiologists. Our deep learning model
reached breast-based sensitivity of 65% (39 of 60; 95% CI, 56%-74%) at 2 false positives per DBT
volume on a test set of 460 examinations from 418 patients.

CONCLUSIONS AND RELEVANCE The large, diverse, and curated data set presented in this study
could facilitate the development and evaluation of artificial intelligence algorithms for breast cancer
screening by providing data for training as well as a common set of cases for model validation. The
performance of the model developed in this study showed that the task remains challenging; its
performance could serve as a baseline for future model development.
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Introduction

Deep learning emerged mainly due to rapid increases in access to computational resources and large-
scale labeled data.1 Medical imaging is a natural application of deep learning algorithms.2 However,
well-curated data are scarce, which poses a challenge in training and validating deep learning models.
Annotated medical data are limited for a number of reasons. First, the number of available medical
images is much lower than the number of available natural images. This is particularly an issue when
investigating a condition with fairly low prevalence, such as breast cancer in a screening setting (<1%
of screening examinations result in a cancer diagnosis). Second, access to medical imaging data is
guided by a number of strict policies given that they contain patients’ medical information. Sharing of
medical imaging data requires an often nontrivial and time-consuming effort to deidentify the data
as well as ensure compliance with requirements from the institution that is sharing the data and
beyond. Finally, annotation of medical imaging data typically requires the work of radiologists, who
already have high demands on their time.

As a result, the amount of well-annotated large-scale medical imaging data that are publicly
available is limited. This is certainly a problem when training deep learning models, but it also results
in a lack of transparency when evaluating model performance.

Limited reproducibility of results has been particularly visible in mammography research,
arguably the most common radiology application of artificial intelligence (AI) in the last 2 decades.3-6

Researchers use different, often not publicly available, data sets and solve related but different
tasks.7 Moreover, studies have different evaluation strategies, which makes it difficult to reliably
compare methods and results. An AI system must be extensively validated before application in
clinical practice. A common shortcoming in many studies is that the test set was obtained from a
single institution and a limited number of devices.8 In addition, some studies make exclusions from
the data, which further obscure the true performance of the algorithms.

In this study, we aimed to address some of these challenges. First, we curated and annotated a
data set of more than 22 000 three-dimensional (3D) digital breast tomosynthesis (DBT) volumes
from 5060 patients. DBT is a new modality for breast cancer screening that, instead of projection
images (as in mammography), delivers multiple cross-sectional slices for each breast and offers
better performance.9 We are making this data set publicly available at the Cancer Imaging Archive,10

a public data hosting service for medical images of various modalities together with community
analyses that facilitate the usability of shared data sets. This will allow other groups to improve the
training of their algorithms as well as test their algorithms on the same data set, which could improve
both the quality of the models and comparison between different algorithms. This could also allow
groups that have access to strong machine learning expertise but no clinical data to contribute to the
development of clinically useful algorithms.

In addition, we developed and made publicly available a single-phase deep learning model for
the detection of abnormal results in DBT that can serve as a baseline for future development or be
used for fine-tuning in solving other medical imaging tasks. To our knowledge, this is the first
published single-phase deep learning model for DBT. Given that the major challenge of developing
the model for this task is a very limited number of positive locations, we evaluated and compared
different methods for addressing this issue.

Methods

Data Set
This study was approved by the Duke University Health System institutional review board with a
waiver of informed consent due its retrospective nature. We analyzed DBT volumes obtained from
Duke Health System, following the Standards for Reporting of Diagnostic Accuracy (STARD)
reporting guideline. Specifically, Duke Health Systems Duke Enterprise Data Unified Content
Explorer tool was queried to obtain all radiology reports having the word tomosynthesis and all
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pathology reports having the word breast within the search dates of January 1, 2014, to January 30,
2018. The image download based on the study dates and medical record numbers obtained from the
radiology reports resulted in an initial collection of 16 802 DBT studies from 13 954 patients
performed between August 26, 2014, and January 29, 2018, with at least 1 of the 4 reconstruction
volumes (ie, left craniocaudal [LCC], right craniocaudal [RCC], left mediolateral oblique [LMLO], and
right mediolateral oblique [RMLO]) available. From this cohort, we divided the studies into 4 groups,
as shown in the patient flowchart (Figure 1) and described below.

The normal group included 5129 screening studies from 4609 patients without any abnormal
findings that were not subject to further imaging or pathology examinations related to the study in
question. Specifically, in this group we included studies that had a Breast Imaging-Reporting and Data
System (BI-RADS) score of 1; had LCC, LMLO, RCC, and RMLO reconstruction views available; did not
use the words mass or distortion in the corresponding radiology report, and did not contain spot
compression among the 4 views. Spot compression was established based on text processing of
radiology reports combined with visual inspection of images. Studies with images containing foreign
objects other than implants and markers (n = 13) and studies from patients who had biopsied mass
or architectural distortion based on a different DBT study (n = 9) were excluded.

The actionable group included 280 studies from 278 patients that resulted in further imaging
examination based on a mass or architectural distortion noted in the study report. Specifically, we
included studies that had a recommendation for a further imaging examination based on a mass or
architectural distortion noted in the study report; did not result in a biopsy; had LCC, LMLO, RCC, and
RMLO reconstruction views available; and did not contain spot compression among the 4 views. Spot
compression was established in the same manner as in the normal group. Studies with images
containing foreign objects other than implants and markers (n = 2) and studies from patients that
had biopsied mass or architectural distortion based on a different DBT study (n = 2) were excluded.

The benign group included 112 studies from 112 patients containing benign masses or
architectural distortions biopsied based on this DBT examination. Specifically, in this group we
included studies that had a BI-RADS score of 0, 4, 4A, 4B, 4C, or 5; had a mass or architectural
distortion that was seen in the DBT imaging study in question that was identified using laterality

Figure 1. Patient Flowchart

16 802 DBT examinations (from 13 954) with ≥1 reconstruction view available in Duke Health System
performed between August 26, 2014, and January 29, 2018
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AD indicates architectural distortion; BI-RADS, Breast Imaging-Reporting and Data System; DBT, digital breast tomosynthesis; LCC, left craniocaudal; LMLO, left mediolateral oblique;
RCC, right craniocaudal; RMLO, right mediolateral oblique.
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and/or location noted in a related breast pathology report and was biopsied; had benign results of all
biopsies per the pathology reports; and a radiologist was able to retrospectively locate at least 1 of
the biopsied benign masses or architectural distortions in the reconstruction views from the study.
One study for which the biopsied mass was visible only on spot compression views was excluded.

The cancer group included 89 studies from 89 patients with at least 1 cancerous mass or
architectural distortion that was biopsied based on this DBT examination. Specifically, we included
studies that had a mass or architectural distortion seen in the DBT images that was identified using
laterality and/or location noted in a related breast pathology report and was biopsied; had at least 1
biopsied mass or architectural distortion corresponding to cancer (invasive or ductal carcinoma in
situ) per the pathology report; and a radiologist was able to retrospectively locate at least 1 of the
biopsied cancerous mass or architectural distortion in the reconstruction views from the study.
Studies for which all cancerous masses or architectural distortions were visible only on spot
compression views (n = 42) were excluded. More details on the exclusion of cases from the initial
population are provided in eAppendix 1 in the Supplement.

Training, Validation, and Test Sets
In total, our data set contained 22 032 reconstructed volumes that belonged to 5610 studies from
5060 patients. It was randomly split into training, validation, and test sets in a way that ensured no
overlap of patients between the subsets. The test set included 460 studies from 418 patients. For the
validation set, we selected 312 studies from 280 patients, and the remaining 4838 studies from 4362
patients were in the training set. The selection of cases from the benign and cancer groups into the
test and validation sets was performed to assure a similar proportion of masses and architectural
distortions. Descriptive statistics for all the subsets are provided in Table 1.

Image Annotation
Study images along with the corresponding radiology and pathology reports for each biopsied case
were shown to 2 radiologists at our institution (R.W. and S.G.) for annotation. We asked the
radiologists to identify masses and architectural distortions that were biopsied and to put a
rectangular box enclosing them in the central slice using a custom software developed by a
researcher (N.L.) in our laboratory. Each case was annotated by 1 of 2 experienced radiologists. The
first radiologist, with 25 years of experience in breast imaging (R.W.), annotated 124 cases, whereas
the second radiologist, with 18 years of experience in breast imaging (S.G.), annotated 77 cases. This
way we obtained 190 bounding boxes for cancerous lesions in 173 reconstruction views and 245
bounding boxes for benign lesions in 223 reconstruction views. There were 336 and 99 bounding
boxes for masses and architectural distortions, respectively, across cancerous and benign lesions.

Table 1. Descriptive Statistics of the Data Set Used for Training, Validation, and Testing

Characteristics

No.

Training set Validation set Test set
Patients

Total 4362 280 418

Normal group, No. (%) 4109 (94.2) 200 (71.4) 300 (71.8)

Actionable group, No. (%) 178 (4.1) 40 (14.2) 60 (18.9)

Benign group, No. (%) 62 (1.4) 20 (7.1) 30 (7.2)

Cancer group, No. (%) 39 (0.9) 20 (7.1) 30 (7.2)

Studies 4838 312 460

Reconstruction volumes 19 148 1163 1721

Bounding boxes for cancerous lesions 87 37 66

Bounding boxes for benign lesions 137 38 70

Bounding box diagonal, mean (SD), pixels 344 (195) 307 (157) 317 (166)
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Baseline Algorithm
Preprocessing
First, we applied a basic preprocessing by window leveling images based on information from the
Digital Imaging and Communications in Medicine file header. Then, each slice was downscaled by a
factor of 2 using 2 × 2 local mean filter to reduce computational and memory footprint. After that, we
eroded nonzero image pixels with a filter of 5-pixel radius for skin removal. Finally, we extracted the
largest connected component of nonzero pixels for segmenting the breast region.

Detection Algorithm
For a baseline method to detect lesions, we used a single-phase fully convolutional neural network
for 2-D object detection11 with DenseNet12 architecture. The model processes each 2-D input slice
independently. Following this,11 raw model predictions correspond to a grid in the input slice image
with cells sized 96 × 96 pixels. For each cell, the network outputs a confidence score for containing
the center point of a box and 4 values defining the location and dimensions of the predicted box. A
bounding box is defined by offset from the cell center point as well as scale in relation to a square
anchor box sized 256 × 256 pixels.13 Each cell was restricted to predicting exactly 1 bounding box.

The network was optimized using Adam,14 with an initial learning rate of 0.001 and batch size of
16 for 100 epochs over positive examples and early stopping strategy with a patience of 25 epochs.
Weights were randomly initialized using the Kaiming method,15 and biases in the last layer were set
according to Lin et al.16

For training, we sampled positive slices containing ground truth boxes from volumes belonging
to the biopsied groups. The number of positive slices (ie, slices containing a tumor) was established
as the square root of the average dimension in pixels of the box drawn by a radiologist on the center
slice of the tumor. The ground truth 3-D box was defined by the 2-D rectangle drawn by the
radiologist with the third dimension defined by the number of slices, as described previously. Then,
we randomly cropped a slice image to a size of 1056 × 672 pixels, which resulted in an output grid
sized 11 × 7 pixels so that the cropped slice image included the entire ground truth bounding box. For
validation, the slice span of ground truth boxes was reduced by a factor of 2 compared with the
training phase, and we fixed selected slice and cropped slice image regions for each case. This was
done to ensure comparable validation performance was measured based on the same input slice for
all runs and across epochs. All hyperparameters and algorithmic strategies described previously were
decided on the validation set.

During inference, we used entire image slices as the input and padded them with zeros when
necessary to match the label grid size. To obtain predictions for a volume, we split it into halves and
combined slice-based predictions for each half by averaging them. Then, we applied the following
postprocessing. First, predicted boxes for which fewer than half the pixels were in the breast region
were discarded to eliminate false-positive predictions outside of the breast. Then, we applied a
nonmaximum suppression algorithm17 by merging all pairs of predicted boxes that had a confidence
score ratio of less than 10 and an intersection over union greater than 50%. The confidence score
of a resulting box was a maximum of scores from the 2 merged boxes.

Experiments
To provide an insight into the effects of different hyperparameters on the performance, we
performed a grid search over different network sizes and objectness loss functions that address the
problem of class imbalance.18 Our problem was characterized by a significant imbalance between the
bounding boxes corresponding to lesions and background class that the network learns to distinguish
in the training process. The 4 tested loss functions for addressing this problem were: (1) binary
cross-entropy, (2) weighted binary cross-entropy, (3) focal loss,16 and (4) reduced focal loss.19

Weighted binary cross-entropy assigns different weights to positive and negative examples based on
class prevalence. Focal loss is a parametrized loss function that reduces the importance of examples
that are correctly classified without high confidence, as shown in eAppendix 1 in the Supplement.
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Finally, reduced focal loss is equivalent to binary cross-entropy for examples misclassified with a
confidence lower that 0.5, and after this threshold, loss value is gradually reduced to focal loss. For
bounding box localization loss, we used mean squared error as in Redmon et al.11 In total, we trained
768 models, and the results from all runs are provided in eAppendix 2 in the Supplement. The code
for all experiments and network architecture together with the trained model weights are publicly
available.20

In the grid search, model selection was based on the sensitivity at 2 false positives per slice
computed on the validation set after every epoch. For each loss function, we selected the best
performing model for 3-D evaluation on the entire validation set. Following this 3-D evaluation, the
model with the highest sensitivity at 2 false positives per DBT volume on the validation set was used
to generate predictions on the test set for the final evaluation.

Final Model Evaluation on the Test Set
For the final evaluation of the baseline detection algorithm, we used the free-response receiver
operating characteristic (FROC) curve, which shows the sensitivity of the model in relation to the
number of false-positive predictions placed in slice images, volumes, or cases. A predicted box was
considered a true positive if the distance between its center point and the center of a ground truth
box was either smaller than half of the ground truth box diagonal or smaller than 100 pixels. The
additional 100 pixels condition was implemented to prevent punishing correct detections for very
small lesions with unclear boundaries. In terms of the third dimension, the ground truth bounding
box was assumed to span 25% of volume slices before and after the ground truth center slice, and
the predicted box center slice was required to be included in this range to be considered a true
positive.

In addition to the volume-based evaluation described above, we evaluated the accuracy of
model predictions using breast-based FROC. In this case, a prediction for a breast was considered
true positive if any lesion on any view for this breast was detected according to the criteria described
above. This metric most accurately reflects the model performance in a clinical setting.

Statistical Analysis
For the final evaluation of the baseline detection algorithm, we used the FROC curve, which shows
the sensitivity of the model in relation to the number of false-positive predictions placed in slice
images, volumes, or cases. Sensitivity values are reported together with 95% CIs, which were
computed using bootstrapping with 2000 bootstraps. For this, we used an open-source statistical
tool implemented in Python.21

Results

The number of patients in the data set was 5060, with 5059 women (100.0%) and 1 man (<0.1%).
The mean (SD) age at the date of patient’s first examination included in our data set was 55 (11) years.
Age statistics were computed based on 5059 patients. The date of birth for 1 patient was unknown.
Table 2 provides demographic characteristics for patients in our data set.

Performance on the Validation Set
All tested loss functions performed similarly, with the best configuration for each loss achieving
greater than 78% sensitivity at 2 false positives per slice. Using the best model from the grid search
for each loss function in the 2-D per-slice evaluation, we ran inference and evaluated selected models
on the entire validation set using the 3-D per-volume evaluation. The best performance, with 60%
sensitivity at 2 false positives per DBT volume, was achieved by the network trained using focal loss.
In comparison, sensitivity at the same threshold achieved by binary cross-entropy and weighted
binary cross-entropy was 59%, whereas reduced focal loss obtained 58%. The model trained using

Table 2. Characteristics of Patients
in the Data set

Characteristic
Participants,
No. (%)

Age, mean (SD), y 55 (11)

Missing age 1 (<0.1)

Sex

Women 5059 (100.0)

Men 1 (<0.1)

Race

White 3700 (73.1)

Black or African American 957 (18.9)

Asian 180 (3.6)

American Indian
or Alaskan Native

11 (0.2)

Native Hawaiian or other
Pacific Islander

2 (<0.1)

Othera 52 (1.0)

≥2 races 56 (1.1)

Not reported, declined,
or unavailable

102 (2.0)

a The other category was present in the original
data, and it was not specified what groups were
included.
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focal loss was selected for evaluation on the test set. More details on the grid search results and FROC
curves on the validation set are provided in eAppendix 1 in the Supplement.

Performance on the Test Set
Using a model trained by optimizing focal loss function, we generated predictions for the test set.
The model achieved a sensitivity of 42% (95% CI, 35%-50%) at 2 false positives per DBT volume as
shown on the FROC curve in Figure 2. Better performance was reached on the cancer cases than on
benign cases.

Finally, we evaluated the selected model using breast-based FROC computed on the test set. In
this case, sensitivity at 2 false positives per DBT volume for test cases with cancer and all test cases
was 67% (95% CI, 53%-80%) and 65% (95% CI, 56%-74%), respectively. The breast-based FROC
curve for the test set is shown in Figure 3.

Discussion

In this study, we described a large-scale data set of DBT examinations containing data for 5060
patients that we shared publicly. We also trained the first single-phase detection model for this data
set that will serve as a baseline for future development.

Figure 2. Free-Response Receiver Operating Characteristic Curve Showing Performance on the Test Set
of a Model Trained Using Focal Loss
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Figure 3. Breast-Based Free-Response Receiver Operating Characteristic Curve for the Test Set
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Our study included annotations for both masses and architectural distortions. Those abnormal
findings appear differently in DBT images and therefore constitute a more challenging task for an
automated algorithm. A model that focuses on a single task (such as many previously published
models for breast imaging) could show overoptimistic performance. This more inclusive data set
more accurately represents true clinical practice of breast cancer screening. Furthermore, our data
set, which includes normal and actionable cases, is representative of a screening cohort.

Our detection model was developed using only 124 and 175 bounding boxes for cancerous and
benign lesions, respectively. No pretraining on other data sets or similar modalities was used. In
addition, our detection method is a single-phase deep convolutional neural network, which does not
require multiple steps for generating predictions. We showed that a moderate performance can be
achieved with a limited training data. In comparison, a previous study22 reported sensitivity less than
20% at 2 false positives per volume for a model trained from scratch using only DBT data without
pretraining on a much larger data set of mammograms. In another study,23 a sensitivity of greater
than 80% at 2 false positives per volume was reached for a data set containing only architectural
distortions. In Fan et al,24 a 3-D deep learning model was developed that achieved 90% sensitivity at
0.8 false positives per volume on a data set containing only abnormal images with masses.

The methods for evaluating performance of detection algorithms vary. The method used in this
study is robust to models predicting large bounding boxes as opposed to evaluation methods that
consider a predicted box as a true positive if it contains the center point of the ground truth box. In
our study, the center point of the predicted box was required to be contained in the ground truth box
as well. Furthermore, we were solving a 3-D detection task, which generates a higher number of false
positives than 2-D detection tasks. While the performance of our model is not comparable with the
performance of radiologists, our goal was to set a baseline for a model that is trained only on the
provided data and without access to large-scale computer clusters.

Limitations
This study had limitations. First, the data set contains images that were collected from a single
institution. Second, we did not include annotations for calcifications and/or microcalcifications
because they are notably different visual structures in the context of a computer vision detection
system. Detection of calcifications was outside of our research goals when assembling this data set.
This may produce a different composition of DBT volumes than typically encountered in a clinical
setting. Third, the number of biopsied cases was much smaller than the number of images without
bounding boxes. However, this reflects the prevalence of cancers in screening populations.

Images in the data set were interpreted by several radiologists, and the assignment of studies
to groups was made, among other criteria, based on BI-RADS score, which is known to have high
interreader variability. Moreover, for the first 6 to 12 months of DBT adoption at our institution,
radiologists relied on both DBT and mammography for BI-RADS score assignment, and they gradually
moved to diagnosis based on DBT and C-view.

Given that our criteria for a normal examination was the assessment of a radiologist for that
examination, there exists a slight possibility that a cancer was detected in a follow-up examination
that could then be retrospectively visible on the examination that was considered normal. However,
this is a highly unlikely scenario.

Additionally, our baseline model achieved slightly better performance on test cases from the
cancer group compared with the benign group. This could be explained by the fact that cancerous
lesions in our data set or in general are easier to detect by a computer vision algorithm.

Conclusions

In this study, we curated and annotated a publicly available data set of DBT volumes for future
training and validation of AI tools. All the factors described previously make this data set a
challenging but realistic benchmark for the future development of methods for detecting masses
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and architectural distortions in DBT volumes. These factors, including different types of abnormal
results, exclusions of different types of cases, and different evaluation metrics, make it difficult to
compare our method with those previously presented in the literature.22,25,26 This further underlines
the importance of the data set shared in this study.
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